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If a region of reverse flow remains confined within a boundary layer the con- 
ventional boundary-layer equations should continue to apply downstream of the 
point of detachment of the surface streamline (Y = 0). Nevertheless, standard 
numerical techniques fail in the presence of backflow since these methods 
become highly unstable and, in addition, neglect the upstream flow of informa- 
tion. A procedure for numerically integrating the boundary-layer equations 
through a region of reverse flow which takes downstream influence into account 
is therefore presented. This method is then applied to  the problem of uniform 
flow past a parallel flat plate of finite length whose surface has a constant velocity 
directed opposite to that of the main stream. Although singularities occur at 
both the point of detachment (x,) and reattachment (x,) of the Y = 0 streamline, 
this integration technique provides a solution which ceases to apply only in the 
close proximity of these singular points. From this solution it is evident that, 
throughout a large portion of the separated region, the flow is strongly affected 
by conditions near xr, thereby demonstrating the importance of allowing informa- 
tion to be transmitted upstream in a region of backflow. Near xs, however, it is 
found that, in spite of the presence of reverse flow, the solution has a self-similar 
form in this particular example. 

1. Introduction 
When a fluid flows past a solid body at high Reynolds number R, a thin viscous 

boundary layer is known to form at least along the forward portion of the solid 
surface. Under the influence of even a mild adverse pressure gradient, however, 
the motion within this boundary layer may be retarded to the extent that beyond 
a certain point x, the direction of the flow near the surface becomes reversed. 
When this occurs, the forward moving fluid in the boundary layer detaches from 
the surface at x,, being deflected away from the wall by a region of backflow which 
forms downstream. This phenomenon is commonly known as separation. 

In  most theoretical analyses of steady flows at high Reynolds number the 
complications arising because of the presence of boundary-layer separation are 
severe. If the surface streamline (Y = 0) downstream of x, is displaced an order 
one distance from the body, the structure of the entire flow field is altered from 
that which would exist in the absence of separation, since fluid in the free stream 
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now flows past an effective body whose surface contour differs significantly from 
that of the solid object. Even the boundary layer forming upstream of the point 
of detachment is affected, through its dependence on the pressure distribution in 
the adjacent main stream. Consequently, when the region of reverse flow is O( 1) 
in thickness, the analysis of the flow field is generally prohibitively difficult 
because the flow both in the main stream and in the separated region strongly 
depends on the position of the Y = 0 streamline downstream of x,, which is 
a priori unknown. 

If, on the other hand, the dividing streamline beyond its point of detachment 
is displaced a distance #(x; R)  from the body such that O(R-4) < #(x; R) < O(l),  
the problem is somewhat simplified owing to the fact that # + O  as R-too. As 
a result, the first approximation to the solution in the main stream is not influ- 
enced by the separated region which exists downstream of x,. Furthermore, the 
first-order boundary-layer solution upstream of z, (except perhaps very near x,) 
is also independent of # since the governing equations depend, to this order, only 
on the O( 1) pressure gradient along the surface, as calculated, in the usual manner, 
from the potential flow. It remains then to determine the flow structure between 
the surface of the body and the detached portion of the Y = 0 streamline. An 
example of this type is the uniform flow past a flat plate with surface injection, in 
which, as shown recently by Kassoy (1971) and by Klemp & Acrivos (1972), the 
YP = 0 streamline is displaced a distance of O(R-*) from the plate. 

A further simplification results, however, when #(x; R) is O(R-4) since in this 
case the boundary-layer equations should remain valid both upstream and down- 
stream of x, except, possibly, in the immediate neighbourhood of this point. 
Nevertheless, fundamental difficulties are still encountered when a solution to 
these equations is sought downstream of x, because standard methods of 
numerical integration yield solutions which depend, at  any point in the flow field, 
only on conditions upstream. In the region of backflow, however, information is 
clearly being transferred upstream; hence the solution in a rather sizeable portion 
of the separated region may be significantly affected by the nature of the flow 
downstream. Since conventional integration procedures do not allow the flow to 
be affected by any downstream conditions, it should be expected that these 
methods, in addition to being highly unstable when reverse flow occurs, would 
also prove to be quite inaccurate. 

In  considering a problem for which #(x;R)  = O(R-4) downstream of x,, 
Catherall & Mangler (1966) obtained a numerical solution to the boundary-layer 
equations beyond the point of detachment of t h e y  = 0 streamline. Although, in 
their scheme, the equations were integrated in a conventional manner well 
upstream of the separation point, their numerical technique was altered as x, was 
approached in order to allow the solution to take into account the small change in 
pressure due to the presence of the separated region. This was accomplished by 
specifying the displacement thickness of the boundary layer, leaving the pressure 
distribution to be determined from the calculations. By following this procedure, 
Catherall & Mangler found that the boundary-layer equations could be integrated 
in a forward direction through a region of reverse flow and that the solution 
remained regular in the vicinity of x,. 
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Catherall & Mangler’s solution is a significant achievement in that it provides, 
apparently, the fist successful integration of the boundary-layer equations past 
the point of separation. Nevertheless, it is not evident that their procedure 
represents a general approach to the problem because, in all physical applications, 
it is the shape of the solid boundary rather than the displacement thickness which 
is given. In  addition, since the thickness of the separated region remains O(R-*), 
the pressure distribution resulting from the appearance of this region is similarly 
O(R-*) in magnitude and, as remarked earlier, this small pressure effect should 
disappear from the first-order boundary-layer equations as R + co. Consequently, 
if the pressure distribution is uniquely determined from the surface contour as 
R + 00, Catherall & Mangler’s method may only serve to create a body shape for 
which the separated region will remain O(R-4) in width by forcing the solution to 
produce a specified O(R-*) profile for the displacement thickness. Besides, the 
fact that the boundary-layer equations were integrated in a forward direction 
through the region of backflow raises further doubts regarding their technique. 

In  the present paper, we propose a method of solution for problems where 
$ ( x ; R )  remains O(R-*) beyond x,, using an approach, quite different from 
Catherall & Mangler’s, which does not suffer from the limitations discussed above. 
First, we take it for granted that the boundary-layer equations describe the 
viscous flow near the wall both upstream and downstream of the point of detach- 
ment, and that the pressure distribution a t  the edge of the boundary layer is 
determined from the potential-flow solution, which neglects the small displace- 
ment thickness of this viscous region. We then show that solutions to the 
boundary-layer equations can be obtained numerically (except possibly very 
near the points of detachment and reattachment) provided that the down- 
stream influence arising from the presence of reverse flow is properly taken into 
account. 

In  a recent article, Briley (1971) used the full Navier-Stokes equations to solve 
for the flow in the vicinity of a separation bubble which remains inside the 
boundary layer downstream of x,. However, since, in his solutions, at large but 
finite Reynolds numbers the streamwise velocity gradients appear to remain O( 1) 
in magnitude, there is strong indication that in the limit R +a his equations 
would reduce, in effect, to the conventional boundary-layer equations every- 
where except possibly very near x8. Although Briley argued that owing to their 
parabolic nature these equations cannot take dowastream influence into account, 
we shall presently demonstrate that quite the opposite is true in a region of 
reverse flow. 

In  what follows, we shall not be concerned with the detailed structure of the 
boundary-layer solution at the point of separation xs or the point of reattach- 
ment x,.. Rather, the object here will be to provide a method for integrating the 
boundary-layer equations through a region of backflow which allows information 
to be transmitted in the direction of the flow throughout the separated region. 
Of course, in applying this method to a particular problem it should become 
evident whether a singularity exists at x, or x,, although, even if this does happen, 
the boundary-layer solution should still remain valid except in a small neighbour- 
hood of these singular points. 

12-2 
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u =  1 

v, .v I t =  - €  \, = I 

FIGURE 1. Uniform flow past a finite flat plate with surface velocity - E.  

, u = 0, Y = r(z). --- 

The specific problem to be considered here concerns the uniform flow at high R 
past a parallel flat plate of finite length which, although stationary, has its 
surface moving at a constant dimensionless velocity - E in a direction opposite 
to that of the uniform stream. As shown in figure 1, the flow as R --f 00 contains 
a recirculating region which forms within the boundary-layer adjacent to the 
moving surface of the plate. This basic structure was suggested by Leal & Acrivos 
(1969), who, through numerical solutions to the full Navier-Stokes equations for 
R 6 80, showed that when e is small both the width of the separation bubble and 
the displacement thickness of the viscous region become very small as R becomes 
large. Before solving this specific example, however, we shall first describe in $ 2  
a general procedure for numerically integrating the boundary-layer equations in 
a region of reverse flow which takes into account the influence of conditions 
downstream; we shall then apply this numerical technique, in $ 3, to the solution 
of the finite plate problem mentioned above. 

It will become evident from the resulting computations that near the trailing 
edge of the plate the solution is strongly affected by conditions near the point of 
reattachment. In  the vicinity of x,, however, the influence of the trailing edge is 
small, and consequently the flow pattern in the forward portion of the separated 
region is of a similar form to that for a semi-infinite plate. This similarity solution 
has some interesting features of its own which will be described in $4. There, it 
will be shown that no boundary-layer solutions of this type can exist for 
e > 0.3541 and that a, seemingly peculiar behaviour of the shear stress profile is, 
in fact, physically realistic. 

Although the flow problem to be discussed does not involve separation due to 
the action of an adverse pressure gradient, it  will be shown in 5 2 that the method 
of solution also applies to problems involving a non-zero longitudinal pressure 
profile. Moreover, it  is felt that the present numerical procedure represents a 
realistic approach to these more conventional separation problems, provided 
that the displacement thickness remains O(R-3) downstream of x,. 

2. Method of integration 
We shall describe here a technique for integrating the boundary-layer 

equations through a region of reverse flow, deferring until 0 3 the application of 
this integration procedure to a specific problem. We begin with the familiar 
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boundary-layer equations in their dimensionless form : 
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(2.1) 
au au ap a=u au av 
ax a~ ax ay2’ ax ay 

u-+ v- = -- +- -+-= 0, 

where Y is the stretched co-ordinate normal to the surface, V is the normal 
velocity multiplied by JR, and the remaining variables have their usual meaning 
(Rosenhead 1963). Also, the pressure profile p(x )  is assumed known from the 
potential-flow solution evaluated a t  the surface of the body. Anticipating the 
specific problem to be considered in 8 3, we require that u(x, 0) = uo(x) which, of 
course, reduces to the conventional no-slip condition if uo(x) E 0. The boundary 
conditions for (2.1) then become 

(2.2) 
u =  uo(x), V = 0 at Y = 0, 

u =  U ( x )  as Y-tco, 

along with an appropriate initial condition at x = 0. Here, U ( x )  denotes the fluid 
speed at the edge of the boundary layer and is related to p(x) by Bernoulli’s 
equation. 

We next suppose that (2.1) and (2.2) will continue to apply beyond x, provided 
that the thickness of the separated region remains O(R-4) downstream of the 
point of boundary-layer detachment. However, since standard numerical 
techniques fail whenever reverse flow occurs, it is necessary to devise a different 
procedure for the integration of these well-known equations. Specifically, the 
method to be presented here will take proper account of the downstream condi- 
tions by requiring that the direction of integration should coincide with the 
direction of flow. To this end, we divide the flow field into two regions denoted 
by I and I1 respectively, where I represents the region of reverse flow near the 
surface while I1 corresponds to the remaining portion of the flow domain where 
u > 0. Along the line Y = I?@), separating I and 11, u = 0 and V = &(x), both 
r ( x )  and V,(x) being, at  first, unknown. It should be noted that &(x) will be 
positive in the forward portion of the recirculating region and negative towards 
the rear. The original problem thus separates into two separate boundary-layer 
problems in I and I1 which, as will be shown, can be solved in each region by 
integrating the equations in the appropriate direction of the flow. 

For purposes of this analysis it is more convenient to rewrite (2.1) using 
Prandtl’s transposition theorem (Rosenhead 1963, p. 21 l), which yields 

I 

where g y-r(x) 

and 

r’(z) denoting the x derivative of I?. The boundary conditions for each region 
are then 

v(x, 5)  = V(x,  5 )  - r’(4 u(x, 0, 

in region I, (2.4) 
‘U = u0(x),  v = - r’(z) u&) at g = - I?@), 

u=O at c = O ,  
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in region 11. 
u = 0, v = V,(x) at c =  0, 

a =  U(x )  at c-fco, 

Hence, the boundary-layer problem is as shown in figure 2, where x, denotes the 
reattachment point of reverse flow region. 

Clearly, since r ( x )  and V,(x) are initially unknown it is necessary to set up an 
iterative procedure for obtaining the correct solutions in regions I and 11. TO 
begin with, we assume a profile for r ( x )  and then solve the boundary-layer 
problem in I, proceeding in the negative x direction from x, forward to x,. This is 
possible because after having specified r ( x )  we are left, in view of (2.4), with 
a properly posed problem for region I; hence, (2.3) can be solved numerically 
using standard techniques for the integration of nonlinear parabolic differential 
equations. Note that initial conditions are not required for this step since the 
width of I is reduced to a point at  x,. Also, in constructing the finite-difference 
scheme we determine the solution a t  any point A in I from the three adjacent 
points, as shown in figure 2. As a result, information is now transmitted upstream, 
in the direction of flow. This integration yields, then, the flow pattern in I plus the 
function V,(x). 

___t 

W x )  
____t 

FIGURE 2. Boundary-layer problem in the transformed co-ordinatas. 
, u = 0, w = vo(z); e, 6 = -r(%), = o( ), 2) = -P(Z)%O(%)* --- 

Turning next to the region of forward flow, one integrates (2.3) subject to (2.5), 
proceeding step by step in the downstream direction. Since the solution upstream 
of x, is independent of the flow in I, this integration may begin at x, for each 
iteration, after the flow upstream has been evaluated. The solution a t  a point B in 
the flow field is determined from the neighbouring points as shown in figure 2, so 
that, again, information is transferred in the direction of the fluid motion. This 
completes one full iteration. 

To determine if the correct profile for r ( x )  was chosen initially, we next com- 
pute the shear stress at 5 = 0, the boundary between the two regions. Clearly, this 
shear stress should be continuous; otherwise, anew function r ( x )  must be selected 
and the iteration procedure repeated. Note that, since integration of the 
boundary-layer equations has been carried out in both regions I and I1 using 
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well-established integration techniques, the corresponding shear stress profiles at 
5 = 0 can be computed for a given r(x) without difficulty. Therefore, the pro- 
cedure should converge provided a better approximation for P(z) can be selected 
following each iteration. Although it may not be clear initially how to alter r(z) 
at each step, a method will be described in 0 3 for accomplishing this in connexion 
with the particular problem being discussed there. 

This integration scheme should yield a solution valid throughout the separated 
region provided the boundary-layer equations do not become singular at either 
z8 or 5,. However, even if singularities do arise at q and x,, it would appeax that, 
using this integration technique, a solution could still be obtained which would 
cease to apply only locally, in the close proximity of these two points. In  the 
following section, we shall return to this subject of singularities and demonstrate 
that the present numerical scheme is successful in spite of the appearance of 
singularities. 

In  order to check the results of the above integration scheme and provide an 
alternative procedure for treating boundary layers containing reverse flow, a 
second method was developed for solving (2.1) directly. However, because this 
approach does not appear to be as successful in the presence of singularities as 
the procedure described above, it will be described only briefly here. In  this 
seheme, integration of the boundary-layer equations proceeds throughout the 
flow field in the downstream direction. At each value of x, the fmite-difference 
formulation for the associated column of points is constructed so that the solution 
at each point depends on its neighbours in the manner indicated by B in figure 2, 
when u > 0, and by A when u < 0. Thus the portion of a column in the region of 
reverse flow is influenced by points downstream while the remainder of the 
column makes use of upstream information in the usual way. Of course, by means 
of this procedure of integrating column by column through the separated region, 
it is only possible, after each pass, to transfer information across a single column 
upstream. For this reason, one must continue to sweep through the boundary 
layer, beginning each pass at xs, until the solution ceases to vary, within pre- 
scribed limits, at each point in the flow. Although a few solutions for the problem 
in $ 3  were obtained using this method and agreed well with those generated by 
the other technique, difficulties were sometimes encountered near x, and 3, 
indicating that this integration scheme tends to become unstable in the vicinity of 
singular points, As a result, in what follows we shall refer only to the first method 
described above. 

3. Solution for a finite flat plate with negative surface velocity 
To illustrate an application of our numerical technique we consider here the 

uniform flow of an incompressible fluid at high Reynolds number R past a parallel 
flat plate of finite length whose surface moves with a constant velocity in a direc- 
tion opposite to that of the main stream. For the purposes of this analysis, the 
variables are rendered dimensionless in the usual manner by using the plate 
length 1 and the velocity U' of the uniform stream, hence R = U'l/v, where v is 
the kinematic viscosity of the fluid. Also, the constant velocity of the plate surface 
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is denoted by - E .  The co-ordinate system is defined in figure 1, which also depicts 
the basic structure of the flow. 

Following the suggestion of Leal & Acrivos (1969), we begin by assuming, 
subject to a posteriori verification, that the separated region becomes O(R-&) in 
thickness as R-tco, provided that E is small. Thus, in the ensuing analysis we 
shall retain the standard boundary-layer equations but omit the pressure gradient 
term, since the velocity becomes uniform a t  the outer edge of the viscous layer. 
Of course, in the present special case the region of reverse flow results from the 
negative surface velocity of the plate. I n  addition, we note that this backflow is 
confined to a region directly above the surface of the plate, as indicated in 
figure 1. This result is suggested by the findings of Leal & Acrivos (1969), based 
on the numerical solutions of the full Navier-Stokes equations for R < 80, and 
can be justified in the following manner, Let us suppose that the separation 
bubble did in fact extend upstream of the leading edge of the plate. Then, since 
the boundary-layer equations are parabolic, an infinite velocity gradient would 
exist on the upstream side of the detached Y = 0 streamline in the proximity 
of x, and the net effect of this would be to drive x, back to the leading edge. On the 
other hand, if the bubble extended downstream of the trailing edge the boundary- 
layer equations would have only a trivial solution in the region of reverse flow for 
x > 1, since the boundary conditions there would become au/aY = V = 0 at 
Y = 0 and u = 0 at Y = r ( x ) .  This point regarding the location of reattachment 
was further verified by solving the equations using the second procedure 
described in the previous section in which it is not necessary to specify a prior; 
the value of x,. Thus, in this particular case, x, will coincide with the leading 
edge at the origin and x, will be located at the trailing edge, x = 1. 

I n  this problem, the boundary-layer equations become singular at both x, 
and x,, owing to the discontinuity in the boundary conditions. Because x,is at the 
leading edge, however, this singularity can be removed from the equations by 
expressing them in terms of a set of new independent variables in a manner 
analogous to that frequently used for obtaining solutions near the leading edge 
of conventional boundary-layer problems. Thus, putting 

Y(x,rl) = (x/.R)”f(x,r), rl = c/x* = [Y- r(x)I/x& (3.1) 

(3.2) 

and substituting into (2.1), we obtain, in place of (2.3), 

2f,,,,,, +ff,,,, = 2x[f,,fzq -fxfqql, 

with the boundary conditions 

f q = - €3 f x = -E[r’(x) - r(x)/2x]/xa at 7 = -x-W(x), (0 < x < i), 

f,, = 0 at 7 = 0, 

and f q =  1 at q-tcQ. 

Note that as x+O the right-hand side of (3.2) vanishes. Hence, near x = 0, (3.2) 
admits a similarity solution with I’ N xi which correspondsto that of the uniform 
flow past a semi-infinite plate with negative surface velocity. This result seems 
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reasonable since we would expect conditions near the trailing edge of the plate to 
have little effect on the flow near the origin. The similarity solution has some 
rather interesting features which will be discussed briefly in $4, where it will be 
demonstrated that boundary-layer solutions having this similar form can exist 
only for E < 0.3541. Thus, for the problem of a finite plate the technique described 
above will only lead to a solution provided that E < 0.3541. On the other hand, if 
B exceeds this critical value it is not evident that the boundary-layer approxima- 
tions remain valid in the limit R + co. 

With this in mind, we now follow the integration procedure outlined in the 
previous section which begins by dividing the flow field into two regions separated 
by the line u = 0. Since this curve corresponds to 7 = 0, the boundary conditions 
for the integration of (3.2) become 

f = -  -E[r’(x) - r(x)/2x]/z+ at 7 = -x-3r(z), 7l € 3  f, = 
(3.3) 

fq = 0 at = 0, 

in region I1 (u > O ) ,  (3.4) 
fq = 0, f = f ( x , O )  at r ]  = 0, 

f q = l  a8 q+m, 

wheref(x, 0) ,  corresponding to V,(x) in Q 2, is initially unknown. The boundary- 
layer equations can then be integrated according to the prescribed method. For 
each iteration, (3.2) is first integrated in I subject to (3.3); when f(x, 0) has been 
determined, the boundary conditions in (3.4) are used to integrate (3.2) through 
region 11. After each iteration the new profile for r(z) is generated from the 
relation 

(3.5) 1, [ aUII(x,o+) 
- (2, 0-) - 3% (x, O+) 

a7 ri+l(x) = r,(x) 1 +r  

a7 

in which r is a relaxation parameter whose values lie in the range 0 < r < 1. Note 
that if the shear stress at 7 = O+ is greater than that at 7 = 0-, (3.5) will decrease 
I?@) for the next iteration, thereby causing the gradients in I to become larger, 
and vice versa. Although there is no guarantee that the profile for r ( x )  will 
remain smooth after a number of iterations, no such difficulties were encountered 
in the present case provided that r was suitably chosen. For example, for very 
small values of E ,  r could be set equal to 1, while as E approached the critical value 
of 0.3541, T had to be reduced to about 0.3. Of course, the task of determining I?($) 
is simplified to some extent in the present problem by the fact that the position 
of xr is known. However, even if this were not the case, it does not appear that the 
iteration procedure would become significantly more difficult. In  particular, 
by choosing initially a profile for F(x) which extends beyond the true point of 
reattachment it should be possible to generate the correct curve by means of the 
above iteration process, with r ( x )  being driven to zero at each point downstream 
of xr. 

As was mentioned in the previous section, this integration scheme should 
converge if accurate approximations to r (x)  oan be chosen in successive itera- 
tions. In  the problem considered here, convergent solutions were obtained using 
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2 

FIGURE 3. Structure of the flow field for E = 0.3 (values of the stream function have been 
multiplied by R*). ---, u = 0; +, vortex centre. 

(3.5) which, it would appear, should remain successful for other problems of this 
type. However, even if (3.5) were to prove inadequate for some particular case, 
one should still be able to use the present procedure provided that (3.5) could be 
replaced with a more appropriate criterion for altering F(x) after computing the 
shear stress profiles at [ = Ok. 

Although the singularity at  x8 was removed from the equations by using (3.1), 
a similar transformation could not be found for dealing with the trailing-edge 
singularity of the boundary-layer equations. Nevertheless, the presence of 
this singularity at x, did not seem to influence the stability of the integration 
scheme. Rather, owing to the breakdown of the boundary-layer equations, it 
only appeared to affect the accuracy of the solution near xr which, of course, could 
be improved by employing a, small mesh size neax the trailing edge. For this 
reason, in integrating (3.2) in I and I1 the mesh size dx in the streamwise direction 
was continually decreased as x, was approached. Thus, for the numerical results 
to be presented, dx was varied from 0.0025 near x = 1 to about 0.08 near the 
origin, where deviations from the similarity solution are small. The transverse 
mesh size dq was set at 0.04 in all cases. In this manner, solutions were generated 
for a number of values of e in the range 0 < 8 < 0.35. A typical streamline pattern 
for the flow field is plotted in figure 3 for e = 0.3. 

To illustrate how the structure of the separated region depends on 8, we have 
plotted in figure 4 the position of the Y? = 0 streamline for e = 0.1, 0.2 and 0.3. 
For purposes of comparison, we have also included the corresponding curves for 
the semi-infinite plate, which were calculated from the similarity solution men- 
tioned earlier. Clearly, for e = 0.1 the finite plate solution deviates from that of 
the semi-infinite case only in the close vicinity of x,,. In  contrast, when 8 is 
increased to 0.3 the two solutions coincide only for a short distance downstream 
of xs. Thus, it is evident that as e becomes larger the existence of reatkachmeut at 
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FIQURE 4. Structure of the separated flow region as a function of E .  -, Y = 0 streamline ; 
--- , Y = 0 streamline based on the similarity solution; - a  - -, displacement thicknew; 
+, vortex centre with minimum stream function, Yo(€). Y0(0.3) = -0.1108, Yo(0.2) = 
- 0.0522, yCo(O.1) = -0.0146. 

the trailing edge plays an increasingly significant role throughout the separated 
region. 

Other interesting features of the flow are also depicted in figure 4. From the 
indicated positions of the vortex centres, we find that for each e this point is 
located at the same value of x, where the bubble has its maximum width, and 
that it gradually moves upstream with increasing e. In addition, the height of 
the vortex centre is only slightly less than half the maximum height of the 
corresponding Y = 0 line, both of these being proportional to e when e is small. 
Although it has not been plotted here, the shape of u = 0 line is similar to that of 
the dividing streamline, its Y co-ordinate for a given x being about half that of 
the latter. Finally, we have included in figure 4 the displacement-thiokness curves 
for these values of e. It can be seen that, whereas the width of the separation 
bubble increases approximately in proportion to B, the displacement thickness 
shifts outward more slowly. 

The increasing deviation of the finite plate solution from the similarity form is 
further evidenced in the surface shear stress profiles plotted in figure 5. Note here 
that the region of large shear stress associated with the singularity at zs extends 
further and further upstream as E is increased. Thus, the drag coefficient first 
decreases with increasing B, as the similarity solution will be seen to indicate, and 
then begins to increase as a result of the rise in the shear stress along the rear 
portion of the plate. Specifically, the drag coefficient was found to  decrease from 
0.664 at E = 0 to a minimum of 0.633 at about E = 0-25, before beginning to 
increase. Although it may seem peculiar that the drag coefficient should first 
decrease as the surface velocity becomes more negative, we shall demonstrate in 
the next section that this behaviour is quite realistic. 



188 J .  B.  K l m p  and A .  Acrivos 

0.2 

X 

FIUURE 5. Surfme sheer stress profiles for various B. 

-, finite plate ; ---, similarity solution. 

From these solutions it is clear that conditions near the point of reattachment 
of the dividing streamline can strongly affect the flow in upstream portions of the 
separated region. In  addition, profiles for the displacement thickness show that 
in spite of singularities which may arise at x, and x, the boundary-layer thickness 
can remain O(R-4) throughout the region of backflow, provided that E is not too 
large. When this happens, the procedures outlined in 5 2 seem to provide a. useful 
method for integrating the boundary-layer equations, even in the presence of 
these singularities. In  fact, the finite plate problem was also solved without using 
the transformation given in (3.1). I n  this instance, the solution was again obtained 
without difficulty, although, as expected, it was found to be somewhat more 
inaccurate over the forward portion of the bubble. 

Admittedly, the problem discussed in this section differs in many important 
respects from one involving separation due to an adverse pressure gradient. 
Nevertheless, it appears that by successfully applying the integration procedure 
to the above example we have been able to  demonstrate that the present method 
is entirely capable of dealing with a class of problems in which a region of reverse 
flow is contained within a boundary layer. 

4. Discussion of the similarity solution 
It is evident from the results of the previous section that, in the upstream 

portion of the separated region, the solution has a similar form which can be 
obtained by solving (3.2) with the right-hand side set equal to zero. Here, we shall 
discuss some of the interesting features of this solution. To begin with, we note 
that the transformation given by (3.1) is no longer required since by expressing 
the stream function in the similar form 

Y(x ,r ’ )  = (~/W.f(f), 7’ = q.4 (4.1) 
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it  is possible to reduce the boundary-layer equations simply to the familiar 
Blasius equation 

with boundary conditions 
2f” +ff ” = 0 

f ( 0 )  = 0, f‘(0) = -€, f’(c0) = 1. 

(4.2) 

The solution for f(y’), which can be obtained readily through the numerical 
integration of (4.2), represents, then, the solution for the problem of uniform flow 
past a semi-inkite flat plate with a negative surface velocity relative to the free 
stream equal to -e.  It is found that, although, as expected, f’(7’) increases 
monotonically from - E to unity with increasing q’, the profiles for f f f ( f ) ,  being 
proportional to the shear stress, have a more unusual shape, as shown in figure 6. 
Notice that when E is positive (corresponding to a negative surface velocity) the 
shear stress reaches a maximum in the interior of the flow field, and that as E is 
increased the surface shear stress decreases. These same results were obtained by 
Leal & Acrivos (1969)t who then concluded that this solution was physically 
unacceptable owing to the unrealistic form of the shear stress profile. However, 
we shall now demonstrate that this similarity solution is, in fact, the correct 
solution for a semi-infinite plate with a negative surface velocity, provided 
that B < 0.3541, and that the observed shear stress profile, rather than being 
unrealistic, is actually what should be expected. 

To understand the significance of this solution better, let us examine its form 
in the region where f ’(7’) > 0, which lies above the u = 0 line given by Y = I?@). 
Recalling that the solution must be independent of the length scale chosen, we 

t Other investigators have also computed sohtions to  (4.2) but have not commented 
on their behaviour for E > 0 (see Robillard 1971). 
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require that r(x)  = C X ~ ,  where C is a positive constant. Thus, by using the 
transformation (3.1), which replacesf(x, 7) by P(q), we obtain 

(4.3) 
2F”’ + FF” = 0,  

P(0) = f ( C ) ,  P’(0) = 0,  P(00) = 1, 

which is identical to the similarity problem describing the uniform flow past a 
parallel flat plate with a surface injection velocity given by wo(x) = -f(C)/2(Rx)S. 
Here,f(C) is determined from the solution of (4.2) at the point wheref’(7’) = 0. 

Solutions to (4.3) have been tabulated by Emmons & Leigh (1954) for 
f(C) > - 1.2386 and illustrate the well-known fact that as the blowing velocity 
is increased the wall shear stress decreases, and that the region of large shear 
stress is displaced into the interior of the boundary layer. Consequently, the 
interpretation of the solution to (4.2) is clear: the main stream flowing past the 
plate sees a no-slip surface at Y = r(x)  through which fluid, supplied from down- 
stream by the reverse flow in the region 0 < Y < I‘(x), is blown into the forward 
moving stream with velocity wo(x). This vertical flow then acts to decrease the 
surface shear stress and to displace the shear stress maximum away from the 
wall in the same manner as in the injection problem given by (4.3). As E is 
increased!( C) becomes more negative, corresponding to a larger blowing velocity. 

Of course, for the blowing problem described by (4.3), conventional boundary- 
layer theory ceases to apply when f ( C )  < - 1.2386, since the boundary layer is 
then ‘blown away’ from the plate (Kassoy 1971; Klemp & Acrivos 1972). For 
this reason, it might be expected that the solution to (4.2) would no longer exist 
when e is increased to the point where f ( C )  equals this critical value. In  actual 
fact, it was found that solutions to (4.2) could not be obtained if E > 0-3541, 
corresponding to f(C) = - 0.3812, which is substantially larger than - 1.2386, 
the critical value for ‘blow-off’. In  addition, although, as indicated in figure 6, 
the wall shear stress decreases rapidly as €3 0.3541, f ” ( 0 )  is still quite positive 
at this critical point and, in fact, equals 0.1557. Moreover, when 8 was increased 
by the numerical solution was observed to drift slowly untilf’(7’) = - 0.3542 
throughout the flow field, indicating that a t  this value of E the thickness of the 
region of reverse flow becomes thicker than O(R-4). Thus, althoughit is clear that 
for E > 0.3541 the strength of the reverse flow is such that the boundary-layer 
approximations cease to apply, it is not apparent at  present why this should 
occur at that particular value of 8. 

Finally, it should be remarked that in arriving at  this similarity solution we 
have not really neglected the downstream influence on the flow. This is because, 
owing to the absence of a characteristic length in the case of a semi-infinite plate, 
the solution, if it exists, must be self-similar in order to remain independent of 
whatever length scale I is chosen. Consequently, both upstream and downstream 
effects on the solution at any point in the flow must be such that the similar form 
is maintained. On the other hand, as shown in the previous section, if the plate is 
finite in length, this similarity solution is valid only in the forward portion of the 
separated region since the existence of reattachment at the trailing edge of the 
plate influences the solution upstream of x,. 
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